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Abstract

Jamming in hard-particle packings has been the subject of considerable interest in recent years. In a paper by

Torquato and Stillinger [J. Phys. Chem. B 105 (2001)], a classification scheme of jammed packings into hierarchical

categories of locally, collectively and strictly jammed configurations has been proposed. They suggest that these jamming

categories can be tested using numerical algorithms that analyze an equivalent contact network of the packing under

applied displacements, but leave the design of such algorithms as a future task. In this work, we present a rigorous and

practical algorithm to assess whether an ideal hard-sphere packing in two or three dimensions is jammed according to

the aforementioned categories. The algorithm is based on linear programming and is applicable to regular as well as

random packings of finite size with hard-wall and periodic boundary conditions. If the packing is not jammed, the

algorithm yields representative multi-particle unjamming motions. Furthermore, we extend the jamming categories and

the testing algorithm to packings with significant interparticle gaps. We describe in detail two variants of the proposed

randomized linear programming approach to test for jamming in hard-sphere packings. The first algorithm treats ideal

packings in which particles form perfect contacts. Another algorithm treats the case of jamming in packings with

significant interparticle gaps. This extended algorithm allows one to explore more fully the nature of the feasible particle

displacements. We have implemented the algorithms and applied them to ordered as well as random packings of cir-

cular disks and spheres with periodic boundary conditions. Some representative results for large disordered disk and

sphere packings are given, but more robust and efficient implementations as well as further applications (e.g., non-

spherical particles) are anticipated for the future.
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1. Introduction

Packings of hard particles interacting only with infinite repulsive pairwise forces on contact are appli-
cable as models of complex many-body systems because repulsive interactions are the primary factor in

determining their structure. Hard-particle packings are therefore widely used as simple models for granular

media [1,2], glasses [3], liquids [4] and other random media [5], to mention a few examples. Furthermore,

hard-particle packings, and especially hard-sphere packings, have inspired mathematicians and been the

source of numerous challenging (many still open) theoretical problems [6].

We focus our attention in this paper on the venerable idealized hard-sphere model, i.e., the only

interparticle interaction is an infinite repulsion for overlapping particles. This idealization is crucial

because it enables us to be precise about the important concept of ‘‘jamming’’. This concept is closely
related to that of rigid or stable packings in the mathematical literature. In the present work, hard-

sphere jamming is presented from a rigorous perspective by focusing on the geometry of the final packed

states. Rigidity of central-force (spring) networks, and in particular rigidity percolation, has been the

subject of extensive work in the physics literature [7,8]. For disordered generic networks, the question of

whether a network is rigid or not becomes combinatorial in nature and there are very efficient algo-

rithms that give the answer for systems with millions of degrees of freedom on a personal workstation,

at least in two dimensions [9]. However, for particle packings, geometry is crucial, and the problem of

verifying jamming or rigidity is significantly more difficult. Nonetheless, the algorithm presented here is
rigorous and polynomial (it is in the same class as linear programming (LP) problems) for ideal packings

(as defined in Section 2.1), and thus appreciably enlarges the scope of rigidity problems which can be

studied computationally.

There are still many important and challenging questions open even for the simplest type of hard-particle

packings, i.e., packing of perfectly impenetrable equal (congruent) spheres (called monodisperse packings in

the physics literature). One category of open problems pertains to the enumeration and classification of

disordered disk and sphere packings, such as the precise identification and quantitative description of the

maximally random jammed (MRJ) state [10], which has supplanted the ill-defined ‘‘random close packed’’
(RCP) state. Others pertain to the study of ordered systems and finding packing structures with extremal

properties, such as the lowest or highest (for packings of unequal spheres, called polydisperse packings in

the physics literature) density jammed disk or sphere packings, for the various jamming categories de-

scribed below [11,12]. Numerical algorithms have long been the primary tool for studying random packings

quantitatively. In this work, we take an important step toward future studies aimed at answering the

challenging questions posed above by designing tools for algorithmic assessment of the jamming category

of finite packings.

In Section 2, we present the conceptual theoretical framework underlying this work. Specifically, we
review and expand on the hierarchical classification scheme for jammed packings into locally, collectively

and strictly jammed packings proposed in [13]. In Section 3, we present a randomized linear programming

algorithm for finding unjamming motions within the approximation of small displacements, focusing on

periodic boundary conditions in Section 4. This algorithm is rigorous when applied to ideal packings, where

interparticle gaps are very small. In Section 5, we extend the concepts of jamming and the randomized

linear programming algorithm to packings that have significant interparticle gaps and do not fit well in the

rigorous framework suitable for ideal packings. We also introduce a randomized sequential loading al-

gorithm to study non-ideal packings. We discuss the two algorithms in detail and describe a preliminary,
but efficient, implementation in Section 6. Results of physical relevance obtained using this implementation

are presented in a separate publication [14]. Here, we only give some representative illustrations and timing

statistics in order to illustrate the utility of the proposed algorithms. We focus here on sphere packings.

However, extensions to packings of non-spherical smooth convex particles, and in particular, packings of

ellipsoids, are possible and are the subject of current and future work. The ideas that we employ here are
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drawn heavily from the mathematics literature [7,15–17]. Some mathematical preliminaries are given here,

and more technical points are deferred to Appendices A, B, C.
2. Jamming in hard-particle packings

The physical intuition behind the word jamming is strong: It connotes that a given configuration is

‘‘frozen’’ or ‘‘trapped’’. Two main approaches can be taken to define jamming, kinematic or static. In the

kinematic approach, one considers the motion of particles away from their current positions, and this

approach is for example relevant to the study of flow in granular media. 1 The term jammed seems most

appropriate here. In the static approach, one considers the mechanical properties of the packing and its
ability to resist external forces. 2 The term rigid is often used among physicists in relation to such con-

siderations. However, due to the correspondence between kinematic and static properties, i.e., strains and

stresses, these two different views are largely equivalent.

In this paper we largely adopt a kinematic approach, as we focus on the geometry of packings, but the

reader should bear in mind the inherent ties to static approaches. We first give a general approach to

jamming in hard-particle packings in Section 2.1, and then focus on the fundamental and rigorous case of

packings with ideal interparticle contacts (i.e., no interparticle gaps) in Section 2.2, studied both in the

physics and mathematics literature. Finally, we connect these definitions to the kinematic concept of un-
jamming motion in Section 2.3, and also to static concepts in Section 2.4. Since we are attempting to bring

together several apparently different approaches and terminologies, as well as generalize to packings with

interparticle gaps, the exposition will be gradual and more detailed discussion, illustrations and proofs are

delayed to later parts of this paper.

2.1. Jamming as isolation in configuration space

Capitalized bold letters will be used to denote dN -dimensional vectors which correspond to the d-di-
mensional vectors of all N of the particles. Note also that we often use ‘‘sphere’’ and ‘‘ellipsoid’’ in any

dimension d, but sometimes we will emphasize ‘‘disk’’ and ‘‘ellipse’’ in two dimensions for clarity.

A hard-particle packing P ðRÞ is characterized by the positions and orientations of N non-overlapping

particles, which give the configuration R. In particular, a sphere packing in a finite region in d-dimensional

Euclidean space Rd is characterized only by the positions of the sphere centers R ¼ ðr1; . . . ; rN Þ,

P ðRÞ ¼ ri 2 Rd ; i
�

¼ 1; . . . ;N kri
���� � rjkP

Di þ Dj

2
8j 6¼ i

�
;

where the diameter of the ith sphere is Di. Two configurations are identical if all interparticle distances are

the same, i.e., if the configurations are related via a rigid-body motion (and possibly a mirror inversion in

addition). We focus here on monodisperse (i.e., Di ¼ D ¼ const.) hard-sphere packings for simplicity, but
some of the conclusions are in fact applicable to particles of any strictly convex shape, and in particular

ellipsoids. In the case of ellipsoids though, there are dðd � 1Þ=2 additional degrees of freedom per particle

associated with the possible rotations of the particles, and these need to be considered as part of the

configuration. We are currently working on generalizations and extensions of the theory and algorithms to

packings of ellipsoids.
1 In particular, the cessation of flow as jamming is approached.
2 In particular, the infinite elastic moduli near jamming.
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Our perspective on jamming focuses on the set JR of configurations around a particular initial con-

figuration R reachable via continuous displacements of the spheres, subject to non-overlapping constraints

and certain boundary conditions. An illustration of this is provided in Fig. 1 for a very simple case in which
only one disk is free to move, i.e., there are only two degrees of freedom. If JR is isolated in configuration

space, we call it a basin of jamming, and the configuration R 2 JR determines a jammed packing P ðRÞ. To
relate this to the physical intuition of jamming, we must further ask that the extent of JR be small, in the

sense that only small continuous displacements of the particles from their initial configurations are possible

for all R 2 JR. The natural length scale defining the meaning of ‘‘small’’ is the typical size of the particles,

and also the typical size of the interparticle gaps. A more strict mathematical definition of jamming con-

siders packings that have perfect interparticle contacts, which we will call ideal packings. For a jammed

ideal packing R is an isolated point in configuration space, i.e., JR ¼ fRg, so that the particles cannot at all
be displaced continuously from their current configuration (modulo trivial rigid-body motions). We focus

first on this strict definition, and we will return to the issue of interparticle gaps later. By changing the

boundary conditions, we get several different categories of jamming, namely local, collective and strict

jamming.

2.2. Three jamming categories

First we repeat, with slight modifications as in [18], the definitions of several hierarchical jamming
categories as taken from [13], and later we make them mathematically specific and rigorous for several

different types of sphere packings. When defining jamming, one must be very specific about the type of

boundary conditions imposed on the packing, for example, the packing may be contained inside a hard-
Fig. 1. Feasible displacements polyhedron. The figures show three stationary (dark gray) circular disks surrounding a mobile disk

(light gray). For each of the three stationary disks, we have a nonlinear impenetrability constraint that excludes the mobile disk from a

disk of radius D surrounding each stationary disk (dark circles), delimiting the (non-convex) region of reachable configurations JR.

Also shown are the linearized versions of these constraints (dark lines), which are simply tangents to the circles at the point of closest

approach, as well as the region of feasible displacements bounded by these lines (shaded gray). This region is a polyhedral set, and in

the left figure it is bounded, meaning that within the approximation of small displacements (ASD) the mobile disk is locally jammed

(trapped) by its three neighbors, while on the right it is unbounded, showing the cone of locally unjamming motions (escape routes).

Notice that with the true nonlinear constraints, the mobile disk can escape the cage of neighbors in both cases, showing that the ASD is

not exact. However, it should also be clear that this is because we have relatively large interparticle gaps here.
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wall container. For now we simply assume that some boundary conditions are imposed, and we specialize

the meaning of the terms boundary and boundary deformation for specific types of packings in the

following section.
A finite system of spheres is:

Locally jammed. Each particle in the system is locally trapped by its neighbors, i.e., it cannot be trans-

lated while fixing the positions of all other particles. This definition is analogous to the definition of

1-stability in [16]. Because of its simplicity, this definition has been overused to obtain theoretical

estimates of the density of random packings [19,20].

Collectively jammed. Any locally jammed configuration in which no subset of particles can simulta-

neously be continuously displaced so that its members move out of contact with one another and with

the remainder set. An equivalent definition is to require that all finite subsets of particles be trapped by
their neighbors. Compare this to the definition of finite stability in [16].

Strictly jammed. Any collectively jammed configuration that disallows all globally uniform volume-

non-increasing deformations of the system boundary. Note the similarity with collective jamming

but with the additional provision of a deforming boundary. This difference and the physical motiva-

tions behind it should become clearer in Section 4.3. Compare this to the definition of periodic stability

in [16] for packings with periodic boundary conditions.

Observe that these are ordered hierarchically, with local being implied by collective and similarly col-

lective being implied by strict jamming. We point out that these do not exhaust all possibilities and various
intricacies can arise, especially when considering infinite packings [16].

2.3. Unjamming motions

Note that the mathematics literature often uses the term rigid or stable packing for what we call a

jammed packing in Section 2.2. It can be shown [17] that to assess jamming for a given sphere packing, one

need only look for the existence of analytic continuous displacements of the particles from their current

configuration. 3 An unjamming motion DRðtÞ ¼ ðDr1ðtÞ; . . . ;DrN ðtÞÞ, where t is a time-like parameter,
t 2 ½0; 1�, is a continuous analytic displacement of the spheres from their current position along the path

Rþ DRðtÞ, starting from the current configuration, DRð0Þ ¼ 0, and ending at the final configuration

Rþ DRð1Þ, while observing all relevant constraints along the way, such that some of the contacting spheres

lose contact with each other for t > 0. This means that impenetrability and any other particular (boundary)

conditions must be observed, i.e., P ðRþ DRðtÞÞ is a valid packing for all t 2 ½0; 1�. If such an unjamming

motion does not exist, we say that the packing is jammed. By changing the (boundary) constraints we get

different categories of jamming, such as local, collective and strict.

It can be shown (see [17]) that an equivalent definition 4 is to say that a packing is jammed if it is isolated
in the allowed configuration space, i.e., there is no valid packing within some (possibly small) finite region

around R that is not equivalent (congruent) to PðRÞ. In the language of Section 2.1, JR ¼ fRg.
Furthermore, it is a simple yet fundamental fact that we only need to consider first derivatives

V ¼ ðd=dtÞDRðtÞ, which can be thought of as velocities, and then simply move the spheres in the directions

V ¼ ðv1; . . . ; v2Þ to obtain an unjamming motion DRðtÞ ¼ Vt. Therefore, henceforth special consideration

will be given to the final displacement DRð1Þ, so that we will most often just write DR ¼ DRð1Þ. The formal

statement is that a packing is rigid if and only if it is infinitesimally rigid, 5 see [15]. Although the proofs of

this statement published in the mathematics literature consider packings of equal spheres in a hard-wall
container, the proof carries directly to the case of collective jamming with periodic boundary conditions
3 This is the third definition (definition c) in Section 2.1 of [17].
4 This is the first definition (definition a) in Section 2.1 of [17].
5 This is not true for packings of ellipsoids, which may be rigid but not infinitesimally rigid.
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(i.e., packings on a flat torus), as well as packings of unequal spheres. As discussed in Section 4.3, the

statement is also true for strict jamming with periodic boundary conditions. A sphere packing is not

jammed if and only if one can give the spheres velocities V such that no two contacting spheres i and j,
kri � rjk ¼ D, have a relative speed vi;j toward each other: 6

vi;j ¼ vi
�
� vj

�T
ui;j 6 0; ð1Þ

where

ui;j ¼
rj � ri

ri � rj
�� ��

is the unit vector connecting the two spheres. 7 Of course, some special and trivial cases like rigid body

translations (V ¼ constant) or rigid body rotations need to be excluded since they do not really change the

configuration of the system. We will elaborate on this ‘‘linearized’’ perspective in the context of packings

with interparticle gaps in Section 3.1.

In this paper we will plot unjamming motions as ‘‘velocity’’ fields, and occasionally supplement such

illustrations with a sequence of frames from t ¼ 0 to t ¼ 1 showing the unjamming process. Note that the

lengths of the vectors in the velocity fields have been scaled to aid in better visualization. For the sake of
clear visualization, only two-dimensional examples will be used, however, all of the techniques described

here are fully applicable to three-dimensional packings as well. Interactive virtual reality modeling language

(VRML) animations which are very useful in getting an intuitive feeling for unjamming mechanisms in

sphere packings can be viewed on our webpage [22].

2.4. Jamming and forces

We have defined jamming above using kinematic concepts and focused on the positions of the particles,
i.e., on the geometry of the packings. It is very instructive to discuss briefly the relations between contact

forces and applied loads in the context of jamming. This is crucial because of the physical importance of

statical considerations in the study of granular materials and the preponderance of force-based discussions

in the physics literature. Furthermore, forces play a very important role in the analysis of the configuration-

based definitions given above as dual variables associated with impenetrability constraints, and have ap-

peared prominently in the mathematics literature as well [17]. Ref. [23] contains a wide-ranging discussion

of the relation between geometry and forces.

Consider a configuration belonging to a basin of jamming, R 2 JR, and an applied load B ¼ ðb1; . . . ; bNÞ
on the particles. In the case of spheres, bi is just the total force acting on sphere i (for example, due to

thermal or mechanical vibrations or externally applied fields). In the case of ellipsoids, it would also contain

the total torque acting on each particle. Assume for simplicity that this load is independent of the con-

figuration. Under this load, the particles will displace to a new configuration of minimal energy:

max
DR

BTDR for virtual work

such that Rþ DR 2 JR for impenetrability:
ð2Þ

Since the packing is jammed, the program (2) will have a bounded solution which lies on the boundary of

JR, i.e., some particles will be in contact in the new configuration. The Lagrange multipliers associated
6 See Section 2.2 of [17].
7 The sign notation may be a bit unorthodox but is taken from [21].
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with the impenetrability constraints are in fact the reaction contact forces which resist the applied equi-

librium load B.

We thus see the meaning of the three jamming categories in the static context: In a locally jammed
packing each particle i can support any load bi if its neighbors are fixed. A collectively jammed packing can

resist (support) any loading without rearrangements of the particles as long as the boundary is held fixed

externally. Strictly jammed packings on the other hand can support any load with a compressive global

(boundary) component (i.e., positive macroscopic pressure). Note, however, that a packing may be able to

support all compressive global loads even though it is not strictly jammed, as it may be unstable due to the

existence of collective unjamming mechanisms. 8

2.5. Jammed subpackings

It should be mentioned that jammed random particle packings produced experimentally or in simula-

tions typically contain a small population of ‘‘rattlers’’, i.e., particles trapped in a cage of jammed neighbors

but free to move within the cage. For present purposes we shall assume that these have been removed

before considering the (possibly) jammed remainder. This idea of excluding rattlers can be further extended

to ‘‘rattling clusters’’ of particles, i.e., groups of particles that can be displaced collectively even though the

remainder of the packing is jammed. In fact, one can consider any packing which has a jammed subpacking

(collectively or strictly as defined above, with identical boundary conditions) to be jammed.
The physical meaning and mathematical basis for such a modified approach is more evident from the

static perspective. Specifically, as long as there is a jammed subpacking, this subpacking will resist (support)

global loads (stresses), and furthermore, this jammed subpacking is also able to resist local loads, such as,

for example, induced by vibrations (shaking) in granular materials, therefore making the whole packing

stable and rigid.

2.6. Boundary conditions

Large or infinite packings are most easily created by periodically repeating a certain finite (and possibly

small) known packing. A repetitive packing P̂ ðRÞ is generated by replicating a finite generating packing P ðR̂Þ
on a lattice K ¼ fk1; . . . ; kdg, where ki are linearly independent lattice vectors and d is the spatial dimen-

sionality. The positions of the spheres are generated by

r̂i ncð Þ ¼ r̂i þ Knc and nc is integer; nc 2 Zd ; ð3Þ

where we think of the lattice K as a matrix with d2 elements having the lattice vectors as columns and nc the

number of replications of the unit cell along each basis direction. The sphere îðncÞ is the familiar image

sphere of the original sphere i � îð0Þ, and of course for the impenetrability condition only the nearest image

matters. Notice that condition (3) only gives the positions of the spheres, and additional boundary con-
ditions need to be specified before applying the jamming definitions from Section 2.2.

As previously mentioned, the boundary conditions imposed on a given packing are very important,

especially in the case of strict jamming. Here, we consider two main types of boundary conditions, hard-

wall and periodic boundary conditions.

Hard-wall boundaries. The packing P ðRÞ is placed in an impenetrable concave hard-wall container K
(see [15]). Fig. 2 shows that the honeycomb lattice can be unjammed inside a certain hard-wall con-

tainer. We can also make an effective container out of Nf fixed spheres whose positions cannot change.
8 An example is the Kagom�e lattice disk packing, which can support all compressive global loads (sometimes called ‘‘loads at

infinity’’ in the engineering literature), but is not collectively jammed with periodic boundary conditions.



Fig. 2. Unjamming the honeycomb lattice. A subpacking of size Nc ¼ ð3; 2Þ unit cells of the infinite honeycomb lattice disk packing is

placed inside a hard-wall rectangular container. The arrows in the figures given here show the direction of motion of the spheres V in

the linear unjamming motion, scaled by some arbitrary constant to enhance the figure.
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This is because it is often hard to fit a packing into a simple container such as a square box, while it is

easy to surround it with other fixed spheres, particularly if a periodic lattice is used to generate the
packing. Specifically, one can take a finite subpacking of an infinite repetitive packing and freeze

the rest of the spheres, thus effectively making a container for the subpacking. An example is depicted

in Fig. 3. Note that hard-wall containers do not allow any trivial unjamming motions.

Periodic boundaries. Periodic boundary conditions are often used to emulate infinite systems, and they

fit the algorithmic framework of this work very nicely. To obtain a periodic packing we wrap a repet-

itive packing P̂ ðRÞ around a flat torus, i.e., we ask that whatever happens to a sphere i also happens

to all of the image spheres îðncÞ, with the additional provision that the lattice may also change

by DK:

Dr̂i ncð Þ ¼ Dr̂i þ ðDKÞnc: ð4Þ
When the lattice is fixed (DK ¼ 0), periodic boundary conditions allow for trivial rigid body transla-

tions of the packing, but trivial rotations only exist if the lattice is allowed to change. Furthermore, by

imposing a suitable condition on the deformation of the lattice DK, as described in Section 4.3, one can

eliminate the trivial rigid-body rotations of the packing.
2.7. Generating hard-particle packings

Algorithms to generate large-scale hard-particle packings are very important, especially because ex-

perimental hard-particle configurations are very hard to obtain and are limited in applicability. Of par-

ticular interest are stochastic algorithms aimed at producing random (disordered) packings. Many such

algorithms have been proposed and used in previous work, as explained in more detail in [14]. We produced

most packings using the Lubachevsky–Stillinger compression algorithm [24] with periodic boundary con-

ditions. This algorithm is essentially a hard-sphere molecular dynamics in which the spheres grow in size



Fig. 3. Unjamming the honeycomb lattice. A subpacking of size Nc ¼ ð3; 3Þ of an infinite honeycomb packing is pinned by freezing all

neighboring image disks. A representative unjamming motion is shown as a sequence of several frames between times t ¼ 0 and t ¼ 1

(in the order top left, top right, bottom left and bottom right). The unshaded disks represent the particles in the generating packing

P ðR̂Þ, while the shaded ones are image disks that touch one of the original disks.
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during the course of the simulation at a certain expansion rate and collide with each other elastically. In the

limit of an infinite number of collisions, a final state is reached in which the collision rate diverges and the

particles cannot grow any further. We have extended this algorithm to generate packings of ellipses and
ellipsoids and developed a methodology to access jamming during the compression algorithm, however, this

work will be presented in future publications. A number of packings produced by other methods, such as

the Zinchenko algorithm [25], have also been tested, with similar results.

2.7.1. Using simple lattices to generate packings

Familiar lattices with a simple basis (unit cell), such as the triangular, honeycomb, Kagom�e and square

in two dimensions, or the simple cubic (SC), body-centered cubic (BCC), face-centered cubic (FCC) and

hexagonal-close packed (HCP) in three dimensions, can be used to create a (possibly large) packing taking a
subsystem of size Nc unit cells along each dimension from the infinite lattice packing. The properties of the

resulting system can be studied with the tools developed here, provided that we restrict ourselves to finite

Nc. Moreover, it is important to specify which lattice vectors are to be used. We will usually take them to be

primitive vectors (for which there is one particle per unit cell), but sometimes it will be more convenient to

use conventional ones, as used in the physics literature (usually representing a cubic unit cell having more

then one particle per unit cell for variations on the cubic lattice).

For hard-wall boundary conditions, we can take an infinite packing generated by these simple lattices

and then freeze all but the spheres inside the window of Nc unit cells, thus effectively obtaining a hard-wall
container. Fig. 3 illustrates an unjamming motion for the honeycomb lattice under these conditions.



Fig. 4. Unjamming the Kagom�e lattice. Periodic boundary conditions are used with Nc ¼ ð2; 2Þ. Shaded disks represent periodic

images and have the same velocity as their unshaded original disks.
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For periodic boundary conditions, the generator PðR̂Þ can itself be generated using Nc unit cells of a

simple lattice. 9 In this case the lattice K is a sublattice of the underlying (primitive) lattice ~K, i.e.,

K ¼ ~KDiagfNcg, where DiagfNcg denotes a diagonal matrix whose diagonal is Nc. This is not only a

convenient way to generate simple finite periodic packings, but it is in general what we mean when we ask,
for example, to analyze the jamming properties of the Kagom�e lattice under periodic or hard-wall

boundary conditions. Fig. 4 shows a periodic unjamming motion for the Kagom�e lattice. Notice though

that the jamming properties one finds depend on how many neighboring unit cells Nc are used as the ‘‘base’’

region (i.e., the generating packing), and therefore, we will usually specify this number explicitly. Some

properties may be independent of Nc (for example, the triangular lattice packing is strictly jammed for all

Nc) and tailored mathematical analysis can be used to show this [16,26]. More systematic approaches based

on Bloch wave (Fourier) decompositions of the set of feasible motions are being investigated for repetitive

packings. We will not consider these issues in detail here, but rather focus on algorithmic approaches
tailored for finite and fixed systems (i.e., Nc is fixed and finite), which is important when studying disordered

particle packings, i.e., packings where the generator P ðR̂Þ is itself a large disordered packing.
3. Linear programming algorithm to test for jamming

Given a sphere packing, we would often like to test whether it is jammed according to each of the

categories given above, and if it is not, find one or several unjamming motions DRðtÞ. We now describe a
simple algorithm to do this that is exact for gapless (ideal) packings, i.e., packings where neighboring

spheres touch exactly, and for which the definitions given earlier apply directly. However, in practice, we

would also like to be able to study packings with small gaps, such as produced by various heuristic com-

pression schemes like the Lubachevsky–Stillinger algorithm [24], and we will consider these along with ideal

packings. In this case the meaning of unjamming needs to be modified so as to fit physical intuition. We do

this using what Roux [23] calls the approximation of small displacements (ASD), and propose an algorithm

based on linear programming that can test whether a finite packing is jammed.
9 This closely resembles the Born–von Karman boundary conditions used in solid-state physics models of lattice vibrations.
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We believe that computer-generated packings which are almost ideal are often actually very close in

configurational space to an ideal packing. This cannot be verified exactly in most cases, though some support

for this claim can be obtained by setting the numerical precision of the generation algorithm to higher and
higher values (for example, by increasing the number of collisions per particle in the Lubachevsky–Stillinger

algorithm [24]) and verifying that the interparticle gaps monotonically decrease toward zero. It is possible

though that gaps are natural and essential in certain applications, such as for example, the study of particle

rearrangement in granular materials, and we therefore separately study packings which need not be (close to)

ideal, using mathematical programming as the fundamental tool. When the configuration is known exactly,

often the case for small ordered packings, jamming may be analyzed analytically.
3.1. Approximation of small displacements

As already explained, an unjamming motion for a sphere packing can be obtained by giving the spheres

suitable velocities, such that neighboring spheres do not approach each other. Here, we focus on the case

when DRðtÞ ¼ Vt þ Oðt2Þ are small finite displacements from the current configuration. We will drop the
time designation and just use DR for the displacements from the current configuration R to the new

configuration ~R ¼ Rþ DR. We defer discussion of packings with significant interparticle gaps to Section 5.

In this ASD approximation, we can linearize the impenetrability constraints

~ri

��� � ~rj

��� ¼ ðri
�� � rjÞ þ ðDri � DrjÞ

��PD ð5Þ

by expanding to first order in DR, to get the condition for the existence of a (first-order) feasible dis-

placement DR,

ðDri � DrjÞTui;j 6Dli;j for all fi; jg; ð6Þ
where fi; jg represents a potential contact between nearby spheres i and j, and

Dli;j ¼ ri
�� � rj

��� D

is the interparticle gap (or interstice). The set of contacts fi; jg that we include in (6) form the contact

network of the packing and they correspond to a subclass of the class of fascinating objects called tensegrity

frameworks, namely strut frameworks (see [17] for details and also [2] for a treatment of more general

packings). We only consider potential contacts fi; jg between nearby, and not all pairs of spheres, that is we

only consider a contact if

ri
�� � rj

��6 1ð þ dÞD; ð7Þ
where d� 1 is a chosen gap tolerance.

For a gapless packing, we have Dl ¼ 0 and the condition (6) reduces to (1), and the packing is jammed if

and only if the only non-trivial solution to (6) is DR ¼ 0. For packings with finite but small gaps though,

condition (6) is only a first-order approximation. By transforming Eq. (5), we obtain the nonlinear analog

of Eq. (6):

ðDri � DrjÞTui;j �
Dri � Drj
�� ��2
2 ri � rj
�� �� 6Dli;j 1� Dli;j

2 ri � rj
�� ��

 !
for all fi; jg: ð8Þ

Notice that any displacement feasible under the linearized constraints (6) will also be feasible under the full

nonlinear impenetrability constraints (8). In other words, within the ASD, JR is approximated with the

inscribed polyhedral set PDR � JR of feasible (linearized) displacements, as determined by the system of

linear inequalities (6), as illustrated in Fig. 1. This is a very special and most useful property of sphere

packings which does not generalize to other convex particle shapes.



Fig. 5. The packing from Fig. 1 shown again with a numbering of the disks. Di denotes particle i and Eij denotes the contact between

the ith and jth particles, i.e., the contact fi; jg.
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Also note that for any non-trivial (i.e., Dri 6¼ Drj) solution to (6) the nonlinear inequality (8) is satisfied as

a strict inequality, which means that particles i and j lose contact, even if the inequality is active to first

order. This is an important property which shows that by scaling a first-order feasible displacement DR
appropriately one can always obtain a non-trivial feasible displacement which separates some of the

contacting particles. This property does not directly generalize to other smooth strictly convex particle

shapes, and in particular, it does not apply to packings of ellipsoids.
Comparison of (6) and (8) also suggests that the linearized constraints become too strict as the magnitude

of the displacements becomes comparable to the size of the particles kDri � Drjk � D. The complicated issue

of how well the ASD approximation works when the gaps are not small enough is illustrated in Fig. 1.

By putting the ui;j�s as columns in a matrix of dimension ½Nd � Ne�, where Ne is the number of contacts in

the contact network, we get the important rigidity matrix 10 of the packing A. This matrix is sparse and has

two blocks of d non-zero entries in the column corresponding to the particle contact fi; jg, namely, ui;j in

the block row corresponding to particle i and �ui;j in the block row corresponding to particle j. Repre-

sented schematically:

A ¼

fi; jg
#

i!

j!

..

.

ui;j

..

.

�ui;j
..
.

2
66666664

3
77777775
:

For example, for the four-disk packing shown in Fig. 1, and with the numbering of the disks depicted in

Fig. 5, we have the following rigidity matrix:
10 This is in fact the normalized negative transpose of what is usually taken to be the rigidity matrix, and is chosen to fit the notation in

[21], and also because it resembles the node-arc incidence matrix of the (directed) graph corresponding to the contact network.
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A ¼

E12 E13 E14

D1

D2

D3

D4

u12 u13 u14
�u12

�u13
�u14

2
664

3
775:

Using this matrix, we can rewrite the linearized impenetrability constraints as a simple system of linear

inequality constraints:

ATDR6Dl: ð9Þ
3.1.1. Boundary conditions

Handling different boundary conditions within the above formulation is easy. For example, for usual

periodic conditions, one adds a few columns to the rigidity matrix A with

ui;̂jðncÞ ¼
rĵðncÞ � ri

rĵðncÞ � ri

��� ���
for all images ĵðncÞ which have contacts with one of the original spheres i. These columns correspond to the

periodic contacts wrapping the packing around the torus.
For hard-wall boundaries, we add a potential contact to the contact network from each sphere close to a

wall to the closest point on the wall and fix the endpoint on the wall. Such fixed points of contact and fixed

spheres j, called fixed nodes in tensegrity terminology, are simply handled by transferring the corresponding

term DrTj ui;j to the right-hand side of the constraints in (9).

3.2. Randomized linear programming algorithm

The question of whether an ideal packing is jammed, i.e., whether the system (9) is feasible for some
DR 6¼ 0, can be answered rigorously by using standard LP techniques, as described in Appendix A. If a

packing is jammed, then this LP test is enough. However, for packings that are not jammed, it is more

useful to obtain a representative collection of unjamming motions, rather then use a binary classification

into packings which are jammed and ones which are not jammed. A random collection of such unjamming

motions is most interesting and can be obtained easily by solving several linear programs with a random

cost vector.

We adapt such a randomized LP algorithm to testing for jamming, namely, we solve the following LP in

the displacement formulation:

max
DR

BTDR for virtual work

such that ATDR6Dl for impenetrability

DRj j6DRmax for boundedness;

ð10Þ

for a random load B, where DRmax � D is used to prevent unbounded solutions and thus improve numerical

behavior. 11 The physical interpretation of B as an external load was elucidated in Section 2.4. Trivial
solutions, such as uniform translations of the packing DR ¼ const: for periodic boundary conditions, can

be eliminated a posteriori, for example by reducing DR to zero mean displacement. Alternatively, trivial
11 In our tests we usually set DRmax 	 100D.
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motions can be handled by introducing extra constraints in (10), for example, by fixing the position of one

of the spheres, though we have found this less attractive, particularly for packings with gaps. Finally, trivial

components of DR can also be avoided by carefully choosing B to be in the null-space of A, which usually
means it needs to have zero total sum and total torque (see [21, Chapter 15]). We will discuss numerical

techniques to solve (10) in Section 6.

The reason we have included possibly non-zero gaps Dl in (10) is that computer-generated packings,

which we analyze, are never ideal and there are always small interparticle gaps between some particles, 12

typically much less than a percent of the typical particle size D. One can safely consider such packings

purely within the ASD. However, we need to modify our definition of jamming to allow for very small

particle rearrangements at the application of the load B, i.e., we consider a solution to (10) an unjamming

motion only if some particle is displaced a significant distance:

9i such that kDrikPDrlarge � Dl;

where Dl� D is the typical size of the interparticle gap. Even though any solution to ATDR6 0 is also a

solution to ATDR6Dl, the latter may have other solutions with large components, corresponding to

elongated corners of the polyhedron of feasible displacements PDR (see Fig. 1), which should also be treated

as unjamming motions. Therefore, the primary purpose of including the exact interparticle gaps in (10) is to

ensure proper handling of degenerate cases, such as a near-180� angle between two contacts in 2D (see

Fig. 5).

In summary, we treat any solution DR to (10) with components significantly larger than Dl as an un-
jamming motion. For each B, if we fail to find an unjamming motion, we apply �B as a loading also, for

reasons detailed in Appendix B. We stress that despite its randomized character, this algorithm is almost

rigorous when used as a test of jamming, in the sense that it is strictly rigorous for gapless packings, and also

likely to work well if the interparticle gaps are sufficiently small, as explained in more detail in Appendix B.

We will discuss more complicated adaptations of the randomized LP algorithm to non-ideal packings, i.e.,

packings with larger gaps, in Section 5.

3.3. Kinematic/static duality

The subject of kinematic/static duality and its physical meaning and implications have been discussed in

numerous previous works [7,13,15,17,23]. The dual of the displacement formulation LP (10) (excluding the

additional practical safeguard constraint DR6DRmax), the force formulation LP,

max
f
ðDlÞTf for virtual work

such that Af ¼ B for equilibrium;

f6 0 for repulsion only;

ð11Þ

gives the interparticle repulsive 13 force fi;j between spheres i and j as the dual variable associated with

the impenetrability constraint (6). The displacement- and force-based LPs are of great importance in

studying the stress–strain behavior of granular materials, and since they are equivalent to each other,

we can call them the ASD stress–strain LP. We have emphasized the displacement formulation (10)

simply because we based our discussion of jamming on a kinematic perspective, but a parallel static

interpretation can easily be given. For example, a random B used in the randomized LP algorithm that

finds an unbounded unjamming motion physically corresponds to a load that the packing cannot
12 These gaps may be an inherent and essential feature of disordered packings in general.
13 We choose a negative sign for repulsive forces here in agreement with mathematical literature [17].
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support, i.e., the force formulation (dual) LP is infeasible, implying that the displacement formulation

(primal) LP is unbounded.

In general the stress–strain LP will be highly degenerate and its primal and/or dual solution not unique.
However, as Roux points out [23], the existence of small gaps in random packings is very important in this

context. Namely, ifDl is random and non-zero (even if small), andB is also random, both the primal and dual

solutions will likely be non-degenerate (see [21]), and we have indeed observed this in practice for random

packings. A non-degenerate (basic or vertex) solution to (11) corresponds to an isostatic force-carrying

contact network [7,23]. We use interior-point linear programming algorithms, which are not sensitive to

degeneracies, but also do not necessarily identify a vertex solution to the LP if the solution is not unique.
4. Testing for jamming with periodic boundary conditions

In this section we give more details on using the randomized linear programming approach to test for

local, collective and strict jamming in ideal packings with periodic boundary conditions. An outline of the

actual computational algorithm along with representative results is given in Section 6.1.

4.1. Local jamming

Recall that the condition for a packing to be locally jammed is that each particle be fixed by its neighbors.

This is easy to check. Namely, each sphere has to have at least d þ 1 contacts with neighboring spheres, not

all in the same d-dimensional hemisphere. This can be tested in any dimension by solving a small linear

program, and in two and three dimensions one can use more elementary geometric constructions.

We prefer the LP approach because it is in the spirit of this work and because of its dimensional in-

dependence, and so we present it here. Take a given sphere i and its set of contacts fui;
g, and put these as

rows in a matrix AT
i . Then, solve the local portion of (10) (using the simplex algorithm):

min
Dri
ðAieÞTDri

such that AT
i Dri 6Dli;
;

ð12Þ

which will have an unbounded solution if the sphere i is not locally jammed, i.e., if it is a rattler, as illustrated

in Fig. 1. Here, e is a vector of ones (see Appendix A.1). The local load bi ¼ Aie can be replaced with two

random loads of opposite direction, which is more suitable when larger gaps are present. When testing for

jamming in ideal packings, we remove the rattlers from the packing before proceeding with tests for collective

or strict jamming. Notice that checking each sphere for local jamming using (12) only once is not enough

under this removal scheme. Namely, once a rattling sphere is removed, this removes some contacts from the

packing and can make other spheres not locally jammed. We have observed that sometimes, particularly in
two-dimensional systems, all disks can be removed on the basis of just the local jamming testing.

Of course we can define higher orders of local jamming by asking that each set of n spheres be fixed by its

neighbors, called n-stability in [16]. However, for n > 1 it becomes combinatorially too difficult to check for

this because the number of subsets to be tested grows exponentially. Computationally, we have found

testing for local jamming using (12) to be quite efficient and simple.

4.2. Collective jamming

The randomized LP algorithm was designed to test for collective jamming in large packings, and in this

case the linear program (10) that needs to be solved is very large and sparse. Notice that boundary con-

ditions are only involved when making the list of contacts in the contact network and deciding if certain
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spheres or contact points are fixed. In the case of periodic boundary conditions, we simply add the usual

contacts between original spheres near the boundary of the unit cell and any nearby periodic image spheres

and also fix DK ¼ 0 in Eq. (4).

4.3. Strict jamming

To extend the notion of collective jamming to strict jamming we introduced deformations of the

boundary. In the case of periodic packings, the lattice K plays the role of the boundary. Therefore, the only

difference with collective jamming is that we will now allow the lattice to change while the spheres move,

i.e., DK 6¼ 0 in (4). The lattice deformation DK will become part of the unknowns in (10), but since it too

enters linearly in (4), we still get a linear program, only with coefficient matrix A augmented with new
(denser) rows. These rows have non-zero entries in the columns corresponding to contacts across the pe-

riodic boundary, and for brevity we do not give details here but refer the interested reader to [27]. The

actual implementation of the algorithm for strict jamming requires more care and bookkeeping, but the

conceptual changes should be clear, and the randomized LP algorithm remains applicable.

Obviously, we cannot allow the volume of the unit cell to enlarge, since the unit cell is in a sense the

container holding the packing together. Therefore, we only consider volume-non-increasing continuous

lattice deformations DKðtÞ:

det ~K
h
¼ Kþ DKðtÞ

i
6 detK for t > 0: ð13Þ

We now think of ½DRðtÞ;DKðtÞ� as an unjamming motion and focus on linear motions DKðtÞ ¼Wt,
W ¼ const. and the final small deformations DK ¼ DKð1Þ, and consider first-order linearizations of the

non-expansion nonlinear constraint (13).

The linearized version of (13) is

Tr½ðDKÞK�1�6 0; ð14Þ

and this is just one extra linear constraint to be added to the linear program (10). An extra condition which

needs to be added is that ðDKÞK�1 be symmetric, which is also an added linear constraint,

ðDKÞK�1 ¼ e and e ¼ eT; ð15Þ

where we add the strain tensor e as an unknown in the randomized LP algorithm. Even better, one can

eliminate DK ¼ eK and use the strain as the only added variable. Torquato et al. [18] and Donev and

Torquato [27] discuss the interpretation of ðDKÞK�1 as a macroscopic (global) strain tensor. Note that

condition (15) does nothing more than eliminate trivial rotations of the lattice, which correspond to skew-

symmetric strain tensors, so that uniform translations remain the only trivial unjamming motion. Appendix

C proves that adding lattice deformations does not change the mathematical theory presented in Section 2.3.

The motivation for the category of strict jamming and its above interpretation in the periodic case

should be clear: Changing the lattice in a volume non-increasing way models macroscopic non-expansive

strain (i.e., a compressive macroscopic stress) and is therefore of great relevance to studying the macro-

scopic mechanical properties of random packings (see [18]). We also again point out that strict jamming

is (significantly) stronger than collective jamming for periodic boundary conditions, particularly in two-

dimensional packings. This point is illustrated in Fig. 6, which shows an unjamming motion involving a

deformation of the lattice, even though this lattice packing is collectively jammed. Periodic boundary

conditions are often used to model infinite systems, in the hope that a jammed periodic packing will

produce a ‘‘jammed’’ infinite packing (for example, in the sense of uniform stability [16]) when periodically

replicated in all directions. A simple counting argument demonstrates that isostatic collectively jammed



Fig. 6. Example of a lattice deformation. The above periodic packing (packing 3 in [26]) is collectively jammed, but not strictly

jammed. It can be continuously sheared toward the triangular lattice by deforming the lattice in a volume non-decreasing manner, as

shown here.
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periodic packings cannot generate ‘‘jammed’’ infinite packings because they have too few contacts, but

isostatic strictly jammed periodic packings can since they have enough contacts (due to the inclusion of

additional degrees of freedom for the deforming lattice). We omit details of this counting argument for the

sake of brevity.
5. Dealing with interparticle gaps

We originally motivated our perspective on jamming in Section 2.1 by looking at the set of available

(reachable) configurations JR around a particular initial configuration R, and have since focused mostly on
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ideal packings, though allowing for sufficiently small interparticle gaps. For these packings, JR is very

localized around R, and this makes it possible to define the three jamming categories meaningfully and

rigorously, and also allows for a simple randomized linear programming testing algorithm. However, the
either–or character of such a jamming criterion is often too restrictive or specialized when analyzing large

disordered packings with possibly larger interparticle gaps, where particle displacements may be compa-

rable to the typical particle size. Therefore, we investigate ways to study jamming in this practical sense.

One can make a rigorous definition of jamming even in the case when particle displacements are large.

However, it is not clear that this has a physical significance. A somewhat ambitious but desirable goal is to

efficiently obtain a grasp on the character and extent of JR and use this to judge whether the packing

should be considered jammed or not. However, since JR is a very high-dimensional and non-convex set, it

is a very complex object to describe or understand. We focus here on trying to judge the extent of JR by
trying to displace the spheres away from their current position by as much as possible. This can be done

with a sequential random loading algorithm: Repeatedly solve the LP (10), displace the spheres in the di-

rection of DR by as much as possible while still avoiding overlap, until the particles rearrange and form

contacts that actually support the applied load B. This should be repeated for several random loads, in the

hope of exploring JR along several directions. We give an outline of an algorithm to do this along with

representative results in Section 6.2. The important point here is that for packings which are almost

jammed, mathematical programming is needed in order to efficiently find a direction in which the particles

can be displaced by significant amounts. Traditional heuristics such as Monte Carlo schemes in which
particles are displaced one-by-one simply get trapped easily, and algorithms which search for collective

particle rearrangements are needed.

5.1. Shrink-and-bump heuristic

The following heuristic test for collective jamming has been suggested in [24]: Shrink the particles by a

small amount c and then start the Lubachevsky–Stillinger molecular dynamics algorithm with random

velocities, and see if the system gets unjammed. One would also slowly enlarge the particles back to their
original size while they bump around, so as to allow finite termination of this test (within numerical ac-

curacies). We call this the shrink-and-bump heuristic. The idea is that the vector of velocities takes on

random values in velocity space and if there is a direction of unjamming, it will be found with a high

probability and the system will unjam. Animations of this process can be found in [22].

This kind of heuristic has the advantage of being very simple and thus easy to implement and use (and

also incorporates nonlinear effects), and it is also very efficient, though still significantly slower than

the linear programming algorithm since typically many collisions per particle are needed to significantly

displace the particles due to the high density. By incorporating deformations of the lattice in the Luba-
chevsky–Stillinger algorithm, one can also use this to test for strict jamming, as discussed further in [14]. Its

disadvantages are its non-rigorous character and indeterminacy, artificial introduction of dynamics into a

geometrical problem, and most of all, its strong dependence on the exact value of c. For example, ani-

mations showing how the Kagom�e lattice inside a container made of fixed spheres (as in Fig. 3) can be

unjammed with a large-enough c, even though it is actually collectively jammed under these boundary

conditions, can be found at our webpage [22]. In fact, many jammed large packings will appear unstable

under this kind of test, as motivated with the notion of uniform stability, defined in [16].
6. Algorithmic details

In this section we outline in detail two algorithms to test for jamming in hard-sphere packings. The first

one is applicable to ideal packings, while the second one deals with non-ideal packings. Although the core
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concept used in both is the randomized linear programming algorithms presented in Sections 3 and 4, the

two differ in their goals and the way they process the results of the linear programming step: The first one

attempts to give a binary classification of packings into jammed and not jammed, while the second tries to
explore the extent ofJR by trying to continuously displace the particles as much as possible, as discussed in

Section 5.

6.1. Algorithm: ideal packings

We summarize the proposed algorithm to test for collective or strict jamming in ideal packings, appli-

cable also to packings with very small interparticle gaps (Algorithm 1). This algorithm removes spheres

which are not locally jammed. Once a rattling sphere is removed, this removes some contacts from the
packing, which can make other spheres not locally jammed. Therefore, an implementation in which

neighbors of rattlers are recycled on a stack of spheres to be checked is needed. This algorithm also classifies

packings which have an ideal jammed subpacking as jammed, even if they have some rattling particles or

rattling clusters of particles, as illustrated in Fig. 7 for a disordered binary disk packing.
Fig. 7. Results from the algorithm of Section 6.1 (Algorithm 1). The algorithm to test for collective jamming in ideal packings was

applied to this equimolar bidisperse disk packing of 250 disks (u ¼ 0:846) in order to identify a jammed subpacking (if any). A gap

tolerance of d ¼ 0:01 was used, and all disks that displaced by more than Drlarge ¼ 10�3 were removed (colored black) to leave a

jammed subpacking of 232 disks, for which the average displacement during the test was kDrik=D � 7� 10�7 and the maximal was

maxi kDrik � 2� 10�5, indicating a high numerical accuracy in the packing algorithm (about 20,000 collisions per particle were used).

If the rattling particles or rattling clusters of particles were not removed, the displacements observed would have been higher, as, for

example, in Table 1. On the other hand, if overly strict tolerances were chosen in the algorithm of Section 6.1 (for example,

Drlarge ¼ 10�4), then no jammed subpacking would have been found. With reasonably tight tolerances, there is no strictly jammed

subpacking of this packing. Note that it may be possible to remove some of the disks from the collectively jammed subpacking and still

maintain the jamming property. The dotted disks represent periodic images.
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Algorithm 1 (Randomized linear programming algorithm).

1. If testing for collective jamming, fix the strain e ¼ 0.

2. Choose a suitable gap tolerance d, dD 	 Drlarge, in Eq. (7) and add all potential contacts fi; jg between
neighboring particles to the contact network.

3. If there are no spheres in the packing, declare the packing as not jammed and terminate.

4. Test for local jamming (rattlers):

(a) Make a stack of all the spheres.

(b) Remove the top (pop) sphere i from the stack and solve the LP (12) with bi ¼ Aie using the simplex

algorithm. If kDrikPDrlarge, remove the sphere from the packing, push all its neighbors not on the

stack back on the stack and remove all its contacts from the contact network.

(c) Go back to step 4a if the stack is not empty.

(d) Repeat step 3.
5. Choose a random load B.

6. Solve the LP (10) along with constraint (14) (if testing for strict jamming).

7. Remove all spheres i displaced by the load from the packing, kDrikPDrlarge.
8. Repeat steps 3–4, reverse the direction of B, B �B and repeat steps 6–7.

9. If no spheres were displaced by either load, declare the (sub)packing jammed and terminate. Otherwise

go back to step 3.
6.2. Algorithm: non-ideal packings

When dealing with non-ideal packings, one has to abandon the strict ‘‘jammed’’ versus ‘‘not jammed’’

binary classification. Instead we focus on trying to judge the extent of JR by trying to displace the spheres
away from their current position by as much as possible. We first give the algorithm to do this in Algorithm

2 and then we discuss specific steps and the choices one can make in each step. Some illustrative results are

given in Section 7.2.
Algorithm 2 (Sequential random loading algorithm).

1. If testing for collective jamming, fix the strain e ¼ 0.

2. Choose a suitable gap tolerance d, dD 	 Drlarge, in Eq. (7) and add all potential contacts fi; jg between
neighboring particles to the contact network.

3. Test for rattlers:

For all spheres i, solve the LP (12) using the simplex algorithm and two randomly chosen loads bi of

opposite direction. If kDrikPDrlarge, mark the sphere as a rattler.
4. Choose a random load B and set bi ¼ 0 for rattling particles.

5. Solve the LP (10) along with constraint (14) to obtain a linearized unjamming motion DR.
6. Find the largest scaling s > 0 for the displacements so that no spheres overlap for displacements from 0

to sDR and also require that the volume of the unit cell does not increase, det½Iþ se�6 1. Displace the

spheres to a new configuration, R Rþ sDR, K ðIþ seÞK. Note that this changes the rigidity matrix

A of the packing and requires updating the contact network.

7. If any particle was displaced by a significant amount, skDrik > bD, go back to step 5. Also keep statis-

tics of skDrik over all spheres, such as average kDrik and maximum value max kDrik.
8. Optionally repeat step 3 and set bi ¼ 0 for (new) rattling particles.

9. Reverse the direction of B and repeat steps 5–7.

10. If the average or maximal particle displacement exceed thresholds, declare packing as not ‘‘jammed’’

and terminate. Otherwise go back to step 4 until convinced packing is ‘‘jammed’’.
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We discuss the different steps of this algorithm separately in the following sections. Note that the

proposed algorithm is not as efficient as possible, mostly because not all linear programs need to be solved

to full accuracy. Linear optimizers, and in particular interior-point algorithms, spend most of their effort in
the final stages of the optimization, looking for the exact optimal vertex (or face) of the feasible polytope.

Therefore, early termination is most desirable, and in future work we will develop specialized implemen-

tations that will replace step 5 with several Newton steps of a feasible interior-point algorithm. In a sense,

the above algorithm resembles a sequential linear programming (SLP) algorithm for finding equilibrium

configurations of packings under applied loads. It remains to be explored whether including information

about the curvature of the nonlinear impenetrability constraints, as is done in most modern nonlinear

optimization algorithms, will be useful in light of the increased complexity of the linear algebra involved.

For packings of non-spherical particles, such as packings of ellipsoids, including second-order information
is necessary in order to find feasible directions of displacements. Numerous optimizations related to reuse

of information in the iterative process and linear solvers as well as parallelization will also be investigated.

We stress that one cannot directly use off-the-shelf nonlinear optimization software to explore JR, since

feasibility must be strictly maintained throughout the process. Furthermore, efficiency also demands a

specialized implementation. This is why we present in this work algorithms based on linear programming,

which allows one to use any of the numerous linear programming libraries available today without the

complexity of dealing with nonlinear programming algorithms.

6.2.1. Choosing the gap tolerance

First, we discuss the choice of the gap tolerance d. The larger this tolerance, the more possible particle

contacts we will add to the set of constraints, and thus the more computational effort we need. Further-

more, we are including more redundant and/or stricter-than-necessary linearized impenetrability con-

straints. Choosing a very small tolerance makes it hard to treat systems with moderately large interparticle

gaps (say of the order of d ¼ 0:1D), since crucial constraints which become relevant as soon as the mag-

nitude of the displacements becomes comparable to dD are omitted. We have found values of

d � 0:1D–1:0D reasonable, depending on the dimensionality and type of packing. The general rule is that
the contacts of each sphere with all spheres in (only) its first coordination shell should be included, and of

course physical intuition and close examination of the results are very helpful.

6.2.2. Testing for rattlers

Unlike the case of ideal packings, where we permanently remove rattlers from the packing, here we

simply avoid placing a load on the rattlers, but still consider them as part of the packing, as they may

provide important constraints as the spheres displace. It is desirable not to place a load on rattlers because

for some smaller gap tolerances d, the contact network may not provide sufficient constraints to locally trap
all particles. The particles that are not locally trapped will displace by very large distances under any non-

zero load, leading to a very small scaling s and very slow progress of the algorithm. Unfortunately, some

linear programming solvers may return a large displacement for a rattler even if no load is applied on it, as

most solvers initialize the variables independently of the user. In practice, step 3 of the algorithm only helps

in cases when there is a small number of clear rattlers, as it enables one to use a smaller gap tolerance d and

thus reduce the size of the linear programs, and in such cases the first test for rattlers will already identify

the troublesome particles. In other cases, one simply must use a sufficiently large d.

6.2.3. Scaling the displacements

We emphasized in Section 3.1 that any solution of the linearized impenetrability constraints is also a

solution to the full nonlinear impenetrability constraints. However, there are several reasons why it is

important to choose an appropriate scaling for the displacements s. First, we do not include all pairs of

particles in the constraints, and therefore any DR for which some particle displaces by more than dD is not
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necessarily a feasible displacement, and may need to be scaled down appropriately. Furthermore, the

linearized constraints are significantly stricter than the nonlinear ones for larger displacements, and

therefore it is often possible to scale up the displacements by a significant factor without violating
feasibility.

Since our aim is to displace the particles as much as possible from their initial configuration, we choose

the largest scaling factor possible. To find this scaling, one thinks of DR as a vector of particle velocities and

finds the time of the first interparticle collision s. This can be found with exactly the same procedure as used

to build collision schedules in the Lubachevsky–Stillinger packing algorithm [24]. For highest efficiency, the

computational domain is partitioned into cells and only collisions between particles in neighboring cells are

considered, along with transfers of the particles between the cells. The same partitioning is used when

building the contact network of the packing after displacing the particles, though depending on the value of
the gap tolerance d more than just the neighboring cells might need to be searched. One should also ensure

that the volume of the unit cell does not increase during the deformation of the lattice when testing for strict

jamming.

6.2.4. Termination criteria

We do not give detailed criteria on when to terminate the iterated linear programming in step 7, since

these should really be adapted to a nonlinear feasible interior-point algorithm to be used in place of the

linear optimizer. Typically b � 0:01� 0:1. When none of the particles can be displaced further despite
repeating step 5, the dual variables obtained by the LP solver will become (close to) the true interparticle

forces that resist the load. A primal–dual nonlinear solver would also terminate at such a point and return

the appropriate Lagrange multipliers. However, outside the ASD these forces are no longer unique [23], nor

is it guaranteed that a packing that can support a random load B and �B can support all loads. Therefore,

we need to use several random loads. We do not have estimates or bounds on how many loads need to be

used, however, experience has shown that only a few (3–5) loads are sufficient to find large displacements if

such displacements exist.

6.2.5. Interpreting the results

Processing the results of the above algorithm is somewhat of an art. However, by observing the statistics

of the multiple particle displacements, and especially by visualizing the path traversed by the particles

during the loading, one can get a sense of the character of JR. Particularly useful is observing the average

magnitude of the particle displacements, and we use this metric in reporting some results for disordered

computer-generated packings in Section 7.2. It may also be useful to observe the distribution of dis-

placement magnitudes among the particles.

In general, it is best to first try the algorithm of this section, and then use a visualization tool (like our
VRML animations) or a histogram of the magnitudes of the particle displacements to judge whether there

appears to be a jammed subpacking (to within a tight tolerance), or whether all particles seem to be able to

displace significantly. If the former is the case, then using the algorithm of Section 6.1 one can identify such

a jammed subpacking if it exists within the tolerances used.
7. Implementation and results

We have developed a practical numerical implementation of the randomized LP algorithms using a

primal–dual interior-point linear optimizer. We have applied the algorithms to test for the different jam-

ming categories in practice and verified their utility and efficiency. Illustrations of results obtained using our

implementations are given throughout this paper, and results from the application of the algorithm of

Section 6.2 to large computer-generated mondisperse and bidisperse disk and sphere packings are given in
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[14]. Here, we briefly discuss numerical aspects of the implementation in Section 7.1 and present some

representative results and timing statistics in Section 7.2.

7.1. Numerical aspects: linear optimization

We have implemented an efficient numerical solution of (10) using the primal–dual interior-point al-

gorithm in the LOQO optimization library [28]. Both Fortran 95 codes, which directly invoke the LOQO

library, and algebraic modeling programming language (AMPL) models have been developed, along with

VRML visualization tools. The AMPL models are particularly simple to use and modify, and are available

on our website [22]. We wish to emphasize that by using primal–dual interior point algorithms we auto-

matically get both forces and displacements using the same implementation. For example, both LOQO and
PCx (see [28]) return both primal and dual solutions to the user. Illustrations of results obtained using these

implementations are given throughout this paper. Primal–dual interior-point algorithms are very well

suited for problems of this type. Nonetheless, for three-dimensional problems the available high-quality

implementations of interior-point algorithms (such as [28]) are based on direct linear solvers are too

memory-demanding and inefficient. Tuned implementations based on conjugate-gradient iterative solvers

are needed.

7.2. Results

In this section we apply the algorithm of Section 6.2 to random disk and sphere packings generated via

the Lubachevsky–Stillinger algorithm [24,29], although we have also used the ideal packing algorithm of

Section 6.1, which typically gives a reasonable classification of the packings into jammed and not jammed.

However, Algorithm 1 does not give a feeling for the character of JR for packings which are not jammed

(within the framework of ideal packings), and therefore Algorithm 2 (with loose tolerances) is the preferred

first choice when analyzing a certain type of packing for the first time. In particular, we have learned

through experience that is easy to misclassify disordered monodisperse disk packings as collectively jammed
by choosing inappropriate parameters in the simpler algorithm of Section 6.1.

As a quantitative measure of jamming in these packings, we report the average particle displacement

kDrik achieved during random loading. Another statistic we report is the time (in seconds) spent by the

AMPL implementation (with some Fortran) of the algorithm of Section 6.2 on a typical personal com-

puter. 14 Since most of the computational time is spent in LOQO, similar running times are typical of the

Fortran codes as well. For each packing, we applied three different random loads (with opposite orien-

tations), and for each load we successively solved three linear programs (so a total of 18 linear programs for

each packing). We are currently developing more efficient and robust implementations of these algorithms,
for both packings of disks/spheres and ellipses/ellipsoids.

Testing for strict jamming typically takes more time, by as much as 25%, since additional denser rows/

columns are included in the rigidity matrix, and this is more pronounced in three dimensions where more of

the contacts are on the boundary. The exact way the strain and the associated constraints are handled

makes a difference in this case. We emphasize that for three-dimensional packings the sparse factorization

linear solver in LOQO is not the best choice, so much smaller running times are possible with specialized

implementations. The running time of the linear solver depends non-trivially on both the number of spheres

and the number of contacts in the contact network. The number of contacts is very sensitive to the choice of
the gap tolerance d, which we usually decreased as the packing size increased (and thus the average dis-

placements decreased). Therefore, the running times below should not be taken as a measure of the scaling
14 More precisely, calculations were performed on an 1666 MHz AMD Athlon PC running Linux with 1 GB of memory.
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of the LP solver computational effort with the number of spheres, but rather as typical runtimes for some

representative packing sizes.

In general, the random packings we tested were collectively jammed, in the sense that only small (av-
erage) displacements of the particles are possible. This is illustrated in Table 1. The small feasible dis-

placements are mostly due to rattlers and/or early termination of the packing algorithm and we believe that

any (final) Lubachevsky–Stillinger packing with infinite collision rate will in fact have an ideal collectively

jammed subpacking. It is in fact very important to verify that any packing algorithm claimed to produce

jammed packings can indeed produce jammed ideal packings given enough (possibly) infinite time. One way

to test this is to verify that all tolerances in the test for jamming can be tightened progressively as the

numerical accuracy is increased and the convergence criteria in the packing algorithm are tightened. We

demonstrate this for collective jamming in monodisperse sphere packings for the Lubachevsky–Stillinger
algorithm in Table 2.

These quantitative tabular results illustrate the feasibility and utility of the proposed algorithms.

However, qualitative observations, which are best obtained from the numerous animations of the ‘‘un-

jamming’’ process, are indeed invaluable to getting a better physical intuition and understanding of hard-
Table 1

Results of Algorithm 2 for equimolar binary disk packings of diameter ratio 1.4 (from [14])

N / t (s), collective kDrik=Di, collective kDrik=Di, strict

50 0.845 2.1 0.010 0.060

100 0.842 6.4 0.0034 0.011

250 0.846 21 0.0037 0.0053

500 0.847 72 0.0016 0.0067

750 0.849 88 0.0022 0.012

1000 0.849 130 0.0016 0.018

1500 0.848 247 0.0016 0.020

2500 0.849 248 0.0039 0.010

The first column shows the total number of particles N , the second the packing fraction, the third the running time for the AMPL

model that tests for collective jamming and the last two columns show the average particle displacement during collective (i.e., with a

fixed lattice) and strict jamming (i.e., with a deforming lattice) testing. Notice that the displacements are significantly larger for the

strict jamming test, especially for small packings. The analogous table for three dimensions, given in [14], shows similar behavior but

significantly larger computational times due to the inefficiency of the direct linear solver in LOQO for three-dimensional contact

networks.

Table 2

The average particle displacement kDrik=D during the test for collective jamming is shown for a series of sphere packings produced by

the (original) Lubachevsky–Stillinger algorithm (from [14])

N /Ncoll(10
3) 1 5 10 25

50 0.041 0.015 0.0018 4:9� 10�10

100 0.036 0.016 0.0011 0.00014

250 0.050 0.023 0.0015 0.00036

500 0.047 0.024 0.0028 0.0014

750 0.046 0.019 0.0030 0.0011

1000 0.052 0.020 0.0025 0.00067

From top to bottom the packing size N increases, and from left to right the number of collisions per particle Ncoll (in thousands)

increases (and thus the density also slowly increases). No special handling of rattlers was employed. It is easily observed that the

packings uniformly become ‘‘more jammed’’ as the packing algorithm is run longer (though rattlers may continue to give a finite

contribution to the observed displacements). Similar behavior is expected of any algorithm which in the limit of infinite numerical

precision produces packings with a collectively jammed subpacking. Note that the analogous table for strict jamming, given in [14],

demonstrates that the packings do not become strictly jammed in the ideal sense even in the limit of infinite number of collisions.
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particle packings. Such animations can be found on our webpage [22], and we would be happy to share

many more with interested readers.
8. Conclusions

In this work and [14] we have proposed, implemented and tested a practical algorithm for verifying

jamming categories in finite sphere packings based on linear programming. We demonstrated its simplicity

and utility and presented some representative results for ordered lattices and random packings. Future

extensions and applications of the proposed algorithms are awaiting exploration.

The jamming concepts and algorithms presented here can be extended to packings of non-spherical
particles with certain non-trivial modifications, however, mathematical developments in this area are

lacking. We are investigating such extensions and will report our findings in future work. Other important

tasks include extending various packing generation algorithms to generate strictly jammed packings, as well

as designing algorithms with guarantees of producing jammed packings. The algorithms to test for jam-

ming, and more generally to explore the set of reachable configurations JR for hard-particle packings can
Fig. 8. Locally jammed disk packing. A random packing (u ¼ 0:82) of 1000 disks that is not collectively jammed and a representative

periodic unjamming motion. More insightful animations can be found at the webpage [22].
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be further improved. In particular, a carefully tuned implementation of linear solvers for three-dimensional

packings is needed as a building block in implementations of various nonlinear programming algorithms

related to packings. Work is already under way to provide highly efficient implementations of
various optimization algorithms for linear and nonlinear programming on large-scale (contact) networks

(Fig. 8).
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Appendix A. Non-randomized LP testing for jamming

Determining whether the linear system of inequalities (9) with Dl ¼ 0 has non-trivial solutions is an

interesting mathematical programming problem. One approach is the following: Solve the following linear

program aimed at maximizing the sum of the (positive) gap dilations:

min
DR

X
i;jf g
ðATDRÞi;j ¼ min Aeð ÞTDR

such that ATDR6 0;

ðA:1Þ

where e is the unit vector, and if this returns DR ¼ 0 as one of the optimal solutions, test the rigidity matrix

A for rank-defficiency, i.e., look for non-trivial solutions of ATDR ¼ 0. If this also fails to find an un-
jamming motion, the packing is jammed. Notice that this will usually produce a single unjamming motion,

which we have found to be rather uninteresting for lattice packings in the sense that it is extremely de-

pendent upon Nc.
Appendix B. The geometry of the set of unjamming motions

The linearized impenetrability constraints ATDR6Dl define a polyhedral set PDR of feasible (linearized)

displacements. Every such convex polyhedron consists of a finite piece Phull
DR , a convex polytope given by the

convex hull of its extreme points and possibly an unbounded piece CDR, a finitely generated polyhedral cone.

In some cases this cone will be empty (i.e., CDR ¼ f0g), but in others it will not, as can be seen in Fig. 1. The

full nonlinear impenetrability constraints given by (8) define the true set of feasible displacements

PNL
DR ¼ JR � fRg, which always relaxes the linearization: PDR � PNL

DR . A mathematically well-defined
definition of jamming is to take any ray in the cone CDR as an unjamming motion, and exclude others,

however, as Fig. 1 shows, the elongated corners of PDR are in fact very likely to be unbounded in the true

nonlinear feasible set of displacements PNL
DR , so we prefer to take any ‘‘long’’ direction in PDR as an un-

jamming motion.

We note that the randomized LP algorithm proposed here strictly answers the question of whether the

polyhedral set of feasible displacements contains an unbounded ray (i.e., whether CDR 6¼ f0g) just by ap-

plying two (non-zero) loads b and �b. This is because an attempt to find such a ray will be unsuccessful only

if �b 2 C
DR, where C


DR is the dual (conjugate) cone of CDR, and in this case b 62 C
DR, so that using the load
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�b will find a ray if such a ray exists. Also, we note that one cannot hope to fully characterize the cone of

first-order unjamming motions CDR (i.e., find its convex hull of generating rays), as this is related to the

hard problem of fully enumerating the vertices of a polyhedron. Our randomized approach essentially finds
a few sample rays in CDR.
Appendix C. Strict jamming with periodic boundary conditions

We demonstrate that the mathematical statement that a packing is rigid if and only if it is infinitesimally

rigid (see, for example, [15]) is true also even if we allow the periodic lattice to change. This argument is

motivated by Swinnerton-Dyer [30]. In practice this means that any (first-order) solution obtained by the
linear programming algorithm can be appropriately scaled to obtain a truly feasible displacement in which

some particles strictly lose contact and the volume of the unit cell strictly decreases. We include this proof

because this argument has not previously appeared. If we consider the nonlinear corrections to (14) by

expanding (13) to second order, we get:

detðKþ DKÞ ¼ detðKÞ detðIþ eÞ ¼ detðKÞ
Yd
i¼1
ð1þ kiÞ

¼ detðKÞ
X
i

ki

 
þ
X
i>j

kikj þ higher-order terms

!
;

where ki are the eigenvalues of the strain, which are all real because of (15) and also have a non-positive

sum due to (14). If TrðeÞ ¼
P

ki < 0, then the first-order term will dominate for sufficiently small defor-

mations and the nonlinear constraint (13) will be satisfied. Furthermore, if TrðeÞ ¼ 0, then we have that

X
i>j

kikj ¼ �
1

2

X
i

k2i < 0

for any non-trivial deformation, which shows that the second-order term is of the correct sign and the

volume of the unit cell strictly decreases for sufficiently small deformations.
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